
EXPLORATORY QUERIES

When faced with a new and unfamiliar dataset, it is helpful to start by getting a sense of the classes and properties being used to describe the
data. Without this knowledge, writing queries is virtually impossible. The following “exploratory” queries are simple, reusable, and can quickly
give you an idea what a dataset is all about.

Writing a “Get Classes” query

A query which asks for all the classes used in the dataset (Figure 3) is a great example of basic SPARQL syntax. You can write the query in any
text editor, including a simple one like Notepad.

It starts out with the SELECT statement, in which we tell the query what we want it to return- a single variable, “class”.

The keyword DISTINCT is added to make sure that each time a new class is found, you only get it listed in the results once. Otherwise, the
results would include an entry for each occurrence of the class in the dataset- in this case, that could be millions.

In the next part of the query, the WHERE statement, you set additional conditions for which triples you want to return. The WHERE statement
can contain one triple statement, or many. In this case, there is only one. The subject of the triple is a generic placeholder variable, “?s”.

The predicate is a special variable, “a”, which is shorthand for “rdf:type”. This shorthand is often used because “rdf:type”, the predicate for
declaring a class, occurs very frequently in queries.

The object of the triple is another placeholder variable. You can name it anything, including the commonly used “?o”, but because you are
searching for classes, “?class” is a more meaningful choice.

When you are done with the query, save it, giving it any name you want (e.g., “get_classes”) and using the extension “.rq”, which is standard for
SPARQL queries.

Figure 3- Simple SPARQL query saved as .rq file

To run this query, open a command prompt and make sure you are in the directory where you saved Apache Jena TDB and loaded the dataset.
Then, simply type the following command:

tdbquery --loc libsci --query get_classes.rq

A few things to note about this command: The script starts with “tdbquery”, which tells Jena which utility to use for the task at hand- querying
the data. The “loc” parameter points to the folder where you loaded are dataset, “libsci”. Finally, the “query” parameter always points to a file
where you have saved a SPARQL query.

NOTE: Apache Jena ARQ users will find this process familiar. However, take care to use the “loc” parameter when using “tdbquery” rather than
the “data” parameter used with the “sparql” utility in ARQ. Mixing these two parameters up will result in an error (Figure 4):

Figure 4- Error message when querying dataset loaded in TDB

Alternatively, you could have typed the query directly into the command line. However, this could get messy when writing long and complex
queries. Plus, you wouldn’t have a record of your query in case you wanted to use it again (on this or any other dataset). Many SPARQL queries
only need to be modified slightly to be used on new datasets.

Running this query (and many others in this tutorial) will likely take at least 90 seconds, and possibly a bit longer. Remember, the dataset is
massive- over 25 million triples! If you want to know exactly how long each query takes, you can add the “time” parameter to your command
line, like so:

tdbquery --loc libsci --time --query get_classes.rq

When the query finishes, you should see a table that looks something like the one below (Figure 5).

Figure 5- Results table (truncated)

Obviously, this table is temporary and will disappear as soon as the command prompt is closed. To save the results to a .csv file instead, you just
need to add a few parameters to the command line script used to run the query:

tdbquery --loc libsci --time --results CSV --query get_classes.rq > classes.csv

As you can see, this example added the “results” parameter with the value “CSV”. Also, the “>” operator is used to redirect the results of the
query to the file specified (e.g., “classes.csv”). Now the results are saved somewhere you can refer back to when writing more complex queries.

Writing a “Get Properties” query

Knowing all the classes used in the dataset is a good start, because they will be used as objects in some of the triple patterns that form future
queries. Equally important are the properties that will be used as the predicates to link resources both to literal values and to other resources-
the whole point of Linked Data.

Retrieving a list of all the properties used in the dataset can be accomplished with another simple query (Figure 6). This query follows the same
logic and syntax as the previous query. It asks for any “?property” connecting any subject (?s) and any object (?o). Placeholder variables are

used and DISTINCT is employed to avoid repetitious results – without DISTINCT, this query would return the property for every triple in the

dataset. The only difference is the addition of the ORDER BY keyword to receive the results in alphabetical order according to the property
variable (in this case, this happens to be the only variable asked to see results for anyway). Also, the “ASC” function has been applied so that the
results start from A, rather than Z.

Figure 6- SPARQL query for retrieving all properties in dataset

Just like the previous query, this query is executed from the command line, changing only the value for the query file and the output file where
you would like the results redirected:

tdbquery --loc libsci --time --results CSV --query get_properties.rq > properties.csv

As you will see in the following exercises, saving the lists of classes and properties to refer back to later when writing more specific queries can
be very convenient (Figure 7).

Figure 7: Properties saved as table in CSV file

