
SIMPLE QUERY #2 – OPTIONAL AND TURNING AN OBJECT INTO SUBJECT

Now that you know all the classes and properties used in the dataset (SEE Exploratory Queries section), as well as which properties are used to
describe languages and all the possible language codes (SEE Simple Query No. 1 section), let’s write a more specific query. Let’s limit the type of
Creative Works you are looking for to Books, and the language they are written in to French.

All you need to do is string together a few triple statements. The following query (Figure 12) first uses a placeholder variable (‘?s”) and asks for
all resources of the class Book. Then, it asks for those resources in the French language, using the literal value “fr” as the object of the second
statement. The third statement asks for the names of these resources using a “?name” variable because, as the results will demonstrate, the
placeholder variable used in the first statement is only going to give us URIs, which may not be very meaningful to humans. Note that these
three triple statements are tied together in the WHERE clause, which means that only resources that are Books, have been described as
written in the French language, and who have a name attached to them will be returned in the results table. This is because none of the three
triple statements are OPTIONAL.

Figure 12: SPARQL query to retrieve all books written in French

Figure 13: SPARQL result set with URIs in the “s” column and human readable results in the “name” column

You find that there are quite a few books in the dataset in French. What if you want to narrow them down further? As always, you must know
what properties are used to describe them first. You could go back to the list of all the properties from the entire dataset generated earlier, but
you would be guessing which ones were used to describe resources of the class Book (plus, the subgraph of French books might use even fewer
properties).

Another option you might consider would be picking a URI from the list of French books and writing a simple query to ask for all the properties
used to describe it. However, that URI only represents one resource, and it’s very unlikely that the same exact set of properties was consistently
used to describe every single French book, so this query would likely omit some relevant results.

Instead, you should ask for all the properties used to describe all the French books. The DISTINCT keyword will, as usual, save you from
duplicate results. Notice also that you can leave out the statement asking for the names of the books, because you aren’t interested in that
information this time. In fact, the only results you are asking to be returned from this query (Figure 14) are those from the “?p” (standing for
“property” or “predicate”) variable.

Figure 14: SPARQL query to find all properties used to describe French books

Figure 15: Result set for triple statements sharing subject variable (truncated)

If you scroll through the result set (Figure 15), you find several dozen properties, each of which was used to describe at least one French book. It
seems fair to assume that there will be quite a few French books which are translations of books in other languages. Let’s find out how many
with the following query:

Figure 16: SPARQL query to retrieve French books which are translations from another language

Notice another new keyword has been added to the mix in this query (Figure 16). First, you used four triple statements that shared the same
subject, with each statement specifying a condition that must be met for a resource to be included in the result set. For example, the fourth of
these statements specified that each resource must have the property of being translated from an original work. Then, you added an
OPTIONAL statement that said, if possible, also give us the original name of the work for which each resource is a translation.

This query will still return resources even if the name of the original work is not included in the resource’s description – it will just leave a blank for
that field for those entries in the results set. This is NOT the same as having a “NULL” value in a relational database one queries with SQL- a
subtle distinction.

Also notice that, in order to get the names of the original works (if available), you have taken the object of one triple statement (“?original”) and

used it, in turn, as the subject of another triple statement. In the OPTIONAL clause, the variable (“?original”) represents a new resource that
you are interested in and you re-use the property (“schema:name”) to grab its name (represented as the object of this triple by the variable
“?o_name”) exactly as you used this property to grab the name of the French version of the resource earlier in the query. This is what makes
triples, graphs, and the SPARQL query language so powerful!

